Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Předmět Diskrétní matematika B (MB204)

Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu MB204 - Diskrétní matematika B, Fakulta informatiky, Masarykova univerzita (MU).

Top 10 materiálů tohoto předmětu

Materiály tohoto předmětu

Materiál Typ Datum Počet stažení

Další informace

Cíl

Na konci tohoto kurzu bude student schopen:porozumět a používat metody teorie čísel pro řešení středně obtížných úloh;rozumět tomu, jak jsou výsledky teorie čísel aplikovány v kryptografii;chápat základní výpočetní souvislosti;rozumět algebraickým konceptům a vysvětlit obecné důsledky a souvislosti;modelovat a řešit kombinatorické úlohy a při jejich řešení využívat vytvořující funkce.

Osnova

Čtvrtá část bloku čtyř semestrů matematiky v rozšířené verzi. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky.V tomto semestru se jedná o představení základů teorie čísel, algebry a vybraných kombinatorických metod, včetně souvislostí numerických a aplikačních.1. Teorie čísel (4 týdny) – dělitelnost - gcd, rozšířený Euklidův algoritmus (Bezout); počítání s velkými čísly (zejména gcd, modulární umocňování); prvočísla - vlastnosti, základní věta aritmetiky, faktorizace, testování prvočíselnosti a složenosti (Rabin-Miller, Mersenneho prvočísla); kongruence - základní vlastnosti, Malá Fermatova věta; Eulerova věta; řešení lineárních kongruencí a jejich soustav; binomické kongruence a primitivní kořeny; diskrétní logaritmus; prvočísla - testování prvočíselnosti až po AKS, hledání dělitele, eliptické křivky (úvod); Legendreův symbol a zákon kvadratické reciprocity; další testy prvočíselnosti;2. Aplikace teorie čísel (1 týden) – stručný úvod do asymetrické kryptografie (RSA, DH, ElGamal, DSA, ECC); základy teorie kódování - lineární a polynomiální kódy; aplikace Fourierovy transformace pro rychlé výpočty (např. Schönhage-Strassen)3. Úvod do počítačové algebry (3 týdny) – grupa – permutace, symetrie, modulární grupy, homomorfismy a faktorgrupy, akce grupy – Burnsideovo lemma. Okruhy a tělesa – polynomy a jejich kořeny, dělitelnost v oborech integrity, zejména dělitelnost v Z a v okruhu polynomů (nad tělesem), ideály. Konečná tělesa a jejich základní vlastnosti, využití v computer science. Polynomy více proměnných – Gröbnerova báze.4. Kombinatorické výpočty (4 týdny) – základy kombinatoriky (připomenutí); binomická věta a zobecněná binomická věta; kombinatorické identity; Catalanova čísla; algebra formálních mocninných řad; (obyčejné) vytvořující funkce; exponenciální vytvořující funkce; pravděpodobnostní vytvořující funkce; řešení kombinatorických úloh pomocí vytvořujících funkcí; řešení základních rekurencí (Fibonacci); a určení složitosti rekurentního algoritmu; vytvořujíci funkce v computer science (grafové aplikace, složitost, analýza hashování)

Literatura

doporučená literaturaJ. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravěneurčenoRILEY, K.F., M.P. HOBSON a S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004. 1232 s. ISBN 0 521 89067 5. info

Požadavky

! MB104 Diskrétní matematika && ! NOW ( MB104 Diskrétní matematika )Středoškolská matematika. Elementární algebraické a kombinatorické znalosti a dovednosti (obsah MB101 nebo MB201)

Garant

prof. RNDr. Jan Slovák, DrSc.

Vyučující

Mgr. Michal Bulant, Ph.D.Mgr. Aleš Návrat, Dr. rer. nat.Mgr. Martin Panák, Ph.D.