Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Předmět Biostatistika pro matematickou biologii (Bi5045)

Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu Bi5045 - Biostatistika pro matematickou biologii, Přírodovědecká fakulta, Masarykova univerzita (MU).

Top 10 materiálů tohoto předmětu

Materiály tohoto předmětu

Materiál Typ Datum Počet stažení

Další informace

Cíl

Předmět má za cíl prezentovat studentům základní biostatistické přístupy a metody spolu s jejich aplikacemi při řešení reálných problémů z oblasti biologie a medicíny. Studenti proniknou do výpočetní podstaty používaných metod a jejich předpokladů a získají přehled v možnostech jejich aplikace. Kurz slouží studentům jako příprava pro pokročilejší přednášky statistiky a aplikované analýzy dat. Biostatistika v matematické biologii je předmět na pomezí základní biostatistiky kurzu pravděpodobnosti a statistiky. Na rozdíl od základního kurzu biostatistiky jde více do hloubky teoretické podstaty metod, proti základnímu kurzu pravděpodobnosti a statistiky zase obsahuje aplikace prezentovaných metod na reálné problémy biologie a medicíny.

Osnova

1. Úvod do biostatistiky; Náplň biostatistiky a její základ ve statistice a pravděpodobnosti; Rozdíl mezi statistikou a analýzou dat a jejich vliv na biostatistiku; Typy biostatistických úloh (odhady parametrů, testování hypotéz, predikce, klasifikace) – jejich rozdíly a příklady z praxe.2. Vztah pravděpodobnosti, statistiky a biostatistiky; Pojem náhoda a pravděpodobnost; Typy pravděpodobnosti; Podmíněná pravděpodobnost a její význam v biostatistice; Bayesův vzorec; Senzitivita, specificita, prediktivní hodnoty; Analytický, Bayesovský a frekventistický přístup ke zpracování dat a jejich hlavní rozdíly.3. Data, jejich popis a vizualizace; Jak vznikají data, náhodný vzorek, cílová a výběrová populace; Typy dat: data spojitá, ordinální a nominální; Prezentace naměřených hodnot, význam vizualizace před jejich hodnocením; Popisné statistiky souboru a možnosti jejich vizualizace; Kontrola typu rozdělení pravděpodobnosti.4. Náhodná veličina, rozdělení pravděpodobnosti a reálná data; Rozdělení pravděpodobnosti – diskrétní a spojité; Normální rozdělení a rozdělení z něj odvozená; Informační hodnota spojité proměnné, vliv kategorizace; Transformace náhodné veličiny. Význam transformací pro zpracování dat.5. Odhady charakteristik náhodných veličin I; Cíl provádění odhadů. Spojitost variability dat a variability odhadů; Kritéria vhodnosti odhadu – nestrannost, konzistence, invariance; Metoda maximální věrohodnosti; Nestranné a maximálně věrohodné odhady – jejich role v biostatistice a příklady.6. Odhady charakteristik náhodných veličin II; Odhady parametru polohy, odhady parametru měřítka; Parametrické a neparametrické odhady charakteristik náhodných veličin (střední hodnoty, rozptylu); Centrální limitní věta, interval spolehlivosti odhadu a jeho interpretace.7. Testování hypotéz - úvod; Princip testování hypotéz, prvky testování hypotéz a jejich interpretace; P-hodnota a její interpretace; Chyba I. a II. druhu, síla testu a souvislost s velikostí vzorku; Statistická versus klinická/biologická významnost – příklady.8. Testování hypotéz o kvantitativních proměnných; Parametrické testy o parametrech 1 a 2 rozdělení; Neparametrické testy, permutační testování; Testy o rozdělení náhodné veličiny, testy normality rozdělení.9. Analýza rozptylu (ANOVA); Cíl analýzy rozptylu a souvislost s ostatními testy; Předpoklady analýzy rozptylu; Princip a metodika výpočtu; Zobecnění postupu a rozšíření o další proměnné.10. Testování hypotéz o binárních a kategoriálních proměnných, testy dobré shody; Kontingenční tabulka, relativní riziko, poměr šancí (odds ratio); Multinomické rozdělení a Chi2 rozdělení v analýze kontingenčních tabulek; Testy nezávislosti dvou faktorů, Fisherův exaktní test, McNemarův test.11. Plánování velikost vzorku biologického/klinického experimentu; Důvody plánování experimentu; Výběr cílového parametru hodnocení; Souvislost charakteristik dat, testování hypotéz a klinicky významného rozdílu.12. Korelační a regresní analýza; Princip korelace dvou náhodných veličin, korelační míry/koeficienty; Korelace a kauzalita; Princip regresního modelování, návaznost na analýzu časových řad; Lineární regresní model; Normální rovnice, metoda nejmenších čtverců pro odhad regresních koeficientů; Vyčerpaná variabilita dat, rezidua modelu.13. Úvod do stochastického modelování; Pojem model a jeho komponenty, matice plánu; Zobecněné lineární modely a příklady jejich použití; Regresní koeficienty a metody jejich odhadu; Interval spolehlivosti regresního koeficientu; Analýza reziduí.14. Úvod do analýzy přežití; Data přežití a princip cenzorování; Funkce přežití a riziková funkce – vzájemná souvislost; Neparametrické a parametrické odhady křivky přežití a rizikové funkce; Coxův model proporcionálních rizik; Předpoklady Coxova modelu a jejich ověření.

Literatura

Zar, J.H. (1998) Biostatistical analysis. Prentice Hall, London. 4th ed.Sokal, R.R., Rohlf, F.J. (1994) Biometry, W. H. Freeman, 3th ed.

Požadavky

Nejsou - jde o základní kurz.

Garant

doc. RNDr. Ladislav Dušek, Ph.D.

Vyučující

RNDr. Tomáš Pavlík, Ph.D.doc. RNDr. Ladislav Dušek, Ph.D.