Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Předmět Funkcionální analýza I (M6150)

Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu M6150 - Funkcionální analýza I, Přírodovědecká fakulta, Masarykova univerzita (MU).

Top 10 materiálů tohoto předmětu

Materiály tohoto předmětu

Materiál Typ Datum Počet stažení

Další informace

Cíl

Funkcionální analýza patří mezi základní univerzitní kurzy matematiky. Je využívána v řadě dalších předmětů i v mnoha aplikacích. Cílem předmětu je seznámit posluchače se základními pojmy lineární funkcionální analýzy, zejména s lineárními prostory, jejich duálními (adjungovanými) prostory a s lineárními funkcionály.Po úspěšném absolvování tohoto kurzu bude student schopen:definovat a interpretovat základní pojmy užívané ve výše uvedených oblastech; formulovat příslušné matematické věty a tvrzení a vysvětlit metody jejich důkazů; ovládat efektivní techniky používané v těchto oblastech; aplikovat získané poznatky při řešení konkrétních příkladů; analyzovat vybrané úlohy souvicející s probíranou tématikou.

Osnova

1. Normované lineární prostory, Hilbertovy prostory. Základní rozdíly mezi konečnou a nekonečnou dimenzí. Prostory funkcí a posloupností. Ortogonalita v Hilbertových prostorech. Základy teorie topologických lineárních prostorů.2. Prostor lineárních operátorů. Norma operátoru, spojitost, omezenost, invertibilita. Princip stejnoměrné omezenosti, Hahn-Banachova věta a její důsledky. Věta o otevřeném zobrazení a uzavřeném grafu.3. Duální prostory a operátory. Duální prostory k prostorům funkcí a posloupností. Slabá konvergence a reflexivita. Duální a adjungovanéoperátory.4. Kompaktní operátory a základy spektrální teorie. Kompaktní množiny v Banachových prostorech. Kompaktní operátory a jejich vlastnosti. Klasifikace bodů spektra lineárního operátrou, vlastosti spektra a rezolventní množiny. Spektrum kompaktního operátoru.

Literatura

Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.ZEIDLER, Eberhard. Applied functional analysis :main principles and their applications. New York: Springer-Verlag, 1995. xvi, 404 s. ISBN 0-387-94422-2. infoKOLMOGOROV, A. N. a S. V. FOMIN. Základy teorie funkcí a funkcionální analýzy. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1975. 581 s. info

Požadavky

M3100 Matem. analýza III Matematická analýza: Diferenciální počet funkcí jedné i více proměnných, integrální počet, číselné a funkční posloupnosti a řady. Lineární algebra: Systémy lineárních rovnic, determinanty, lineární prostory, lineární transformace a matice, kanonický tvar matice.

Garant

prof. RNDr. Ondřej Došlý, DrSc.

Vyučující

prof. RNDr. Ondřej Došlý, DrSc.