Předmět Statistické zpracování a modelování dat (UF / PF012)
Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu UF / PF012 - Statistické zpracování a modelování dat, Filozoficko-přírodovědecká fakulta, Slezská univerzita v Opavě (SU).
Top 10 materiálů tohoto předmětu
Materiály tohoto předmětu
Materiál | Typ | Datum | Počet stažení |
---|
Další informace
Obsah
1. Základní pojmy teorie pravděpodobnosti. Opakování, kombinatorika. Pojem pravděpodobnosti, náhodný pokus, náhodný jev, definice a vlastnosti pravděpodobnosti. Nezávislost jevů, podmíněná pravděpodobnost. Náhodná veličina diskrétní a spojitá, pravděpodobnostní distribuční funkce (hustota pravděpodobnosti, PDF) a (kumulativní) distribuční funkce (CDF).2. Charakteristiky rozdělení pravděpodobnosti. Momenty, střední hodnota, rozptyl, standardní odchylka, šikmost, kurtosita, další míry variability. Medián, kvantily, modus. Transformace náhodné veličiny.3. Základní jednorozměrné distribuční funkce. Diskrétní distribuční funkce (alternativní, binomická, Poissonova, hypergeometrická, geometrická, negativně binomická). Spojité distribuční funkce (rovnoměrná, exponenciální, normální, log-normální, chi-kvadrát, Weibullova, Erlangova).4. Náhodný vektor. Distribuční funkce a hustoty pravděpodobnosti vícerozměrných rozdělení. Marginální rozdělení, korelační (kontingenční) tabulka. Momenty rozdělení, kovariance, lineární korelační koeficient, nekorelované a nezávislé veličiny. Multinomické rozdělení, dvoudimenzionální normální rozdělení.5. Limitní věty počtu pravděpodobnosti. Bernoulliova věta, zákon velkých čísel (Čebyševova věta), centrální limitní teorém.6. Statistika - úvod a statistická šetření. Základní pojmy. Kvalitativní a kvantitativní proměnné a jejich statistické charakteristiky. Výběrová šetření, způsoby, typy a chyby. Výběrová rozdělení a jejich charakteristiky - populační vs. výběrové, četnosti. Rozdělení statistik ve výběrech z normálního rozdělení.7. Základy teorie odhadu. Bodový a intervalový odhad, nestranný a nejlepší nestranný odhad. Asymptotické vlastnosti odhadu, konzistentní odhad. Konstrukce bodového odhadu (momentová metoda, metoda maximální věrohodnosti). Konstrukce intervalového odhadu.8. Testování statistických hypotéz. Metodika testování hypotéz, statistická hypotéza, nulová a alternatívní hypotéza, testová statistika, hladina statistické významnosti, p-hodnota, počet stupňů volnosti, chyba prvního a druhého druhu.9. Vybrané parametrické testy. Testování aritmetického průměru a rozptylu (Studentův t-test a F-test), testy dobré shody (chi kvadrát, Kolmogorovův-Smirnovovův test). Analýza závislostí (kontingenční a asociační tabulky, Pearsonův koeficient). Analýza rozptylu (ANOVA), post hoc analýza.10. Vybrané neparametrické testy. Mannův-Whitneyův test, Kruskalův-Wallisův test, Spearmanův koeficient, Kendallovo tau. Testy pro závislé výběry (Friedmanův test).11. Regresní a korelační analýza. Model, koeficienty modelu. Lineární regresní model. Bodové odhady (bodový odhad parametrů regresní přímky, význam bodových odhadů), verifikace modelu, stabilita modelu, testování reziduí. Zobecněná lineární regrese (konstrukční matice, normální rovnice, multikolinearita). Index determinace, parciální korelační koeficienty.12. Ukázky případových studií a aplikací metod statistiky a modelování dat.
Literatura
P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica? Support. Cambridge University Press; 1 edition (June 28, 2010). ISBN 978-0521150125.J.A. Rice. Mathematical Statistics and Data Analysis (with CD Data Sets). Cengage Learning; 3 edition (April 28, 2006). ISBN 978-0534399429.E.T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press (June 9, 2003). ISBN 978-0521592710.
Požadavky
Účast na přednáškách je doporučená. Může být nahrazena samostudiemdoporučené literatury a individuálními konzultacemi. Účast na cvičeních je povinná (min. 80%).
Garant
Doc. RNDr. Stanislav HLEDÍK, Ph.D.
Vyučující
Doc. RNDr. Stanislav HLEDÍK, Ph.D.Doc. RNDr. Stanislav HLEDÍK, Ph.D.