Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Předmět Teorie nanoskopických systémů I (NJSF132)

Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu NJSF132 - Teorie nanoskopických systémů I, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze (UK).

Top 10 materiálů tohoto předmětu

Materiály tohoto předmětu

Materiál Typ Datum Počet stažení

Další informace

Sylabus

1. Modely nezávislých fermionů a bosonůbosony, fermiony, jedno- a dvou-částicové operátory, matice hustoty, ideální Boseho plyn vázaný v harmonickém potenciálu, Fermiho plyn (excitované stavy, polarizovaný Fermiho plyn), konečná teplota a kvazičástice 2. Hartree-Fock (HF) teorie fermionů a bosonůHF metoda pro fermiony (příklady fyzikálních systémů fermionů popisovaných HF metodou, příklady nekonečných systémů s HF metodou), HF metoda pro bosony, Gross-Pitajevského rovnice, HF metoda v jazyce druhého kvantování, HF metoda při konečné teplotě, Hartree-Fock-Bogoliubova metoda a BCS 3. Brueckner-Hartree-Fock (BHF) teorieLippman-Schwingerova rovnice, Bethe-Goldstonova rovnice, jedno-dimenzionální (1D) fermionové systémy (numerické výsledky pro různé systémy), G-matice pro 2D elektronový plyn (rozklad do parciálních vln, separabilní aproximace, G-maticový rozklad, numerické výsledky) 4. Hustotní (density) funkcionální teorie (DFT)funkcionální formalizmus s hustotami, příklady aplikací DFT (Thomas-Fermi teorie atomu, Gross-Pitajevského teorie pro základní stav rozpuštěného (diluted) plynu bosonů), Kohn-Sham rovnice, aproximace lokálních hustot (local density approximation - LDA) pro výměnnou korelační energii, lokální spinově-hustotní aproximace (local spin density approximation - LSDA), započtení proudových členů do DFT (CDFT), statistická hustotní funkcionální teorie (ensemble density functional theory), DFT pro silně korelované systémy (jádra a helium), DFT pro smíšené systémy, symetrie a teorie středního pole 5. Kvantové body v magnetickém polimodel nezávislých částic pro kvantové body ( případ, případ, kapkový stav s maximální hustotou), frakční režim, Hallův jev, eliptické kvantové body (analogie s Bose-Einstein kondenzátem v rotující pasti), spin-orbitální vazba a spintronika, DFT pro kvantové body v magnetických polích, Aharonov-Bohmův jev v kvantových prstencích) 6. Monte Carlo metodystandardní kvadraturní formule, rozdělení náhodné proměnné a teorém centrální limity, výpočet integrálů metodou Monte Carlo, Markovův řetězec, metropolní algoritmus, variační metody Monte Carlo a kvantová mechanika, vývoj stavu v imaginárním čase, Schrodingerova rovnice v imaginárním čase, výběr podle důležitosti (importance sampling)

Literatura

Lipparini E., Modern Many-Particle Physics - Atomic Gases, Quantum Dots, Quantum Fluids, World Scientific Co., Singapore, 2003 Imry Y., Introduction to Mesoscopic Physics, Oxford University Press, Oxford, 1997Rammer J., Quantum Transport Theory, Perseum Books, Reading, Massachusetts, 1998

Garant

prof. RNDr. Jan Kvasil, DrSc.