Předmět Matematika pro fyziky I (NMAF061)
Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu NMAF061 - Matematika pro fyziky I, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze (UK).
Top 10 materiálů tohoto předmětu
Materiály tohoto předmětu
Materiál | Typ | Datum | Počet stažení |
---|
Další informace
Cíl
Základní přednáška z matematiky pro 2. ročník fyziky navazující na Matematickou analýzu (I + II), kódy NMAF051, NMAF052 a Lineární algebru (I+II) , kódy NMAF027, NMAF028.
Sylabus
1. Posloupnosti a řady funkcí Bodová a stejnoměrná konvergence. Weierstrassovo kritérium, Abelovo, Dirichletovo a Leibnizovo kritérium.Limita a spojitost, záměna limit, záměna limity a součtu řady, záměna limity a derivace, sumy a derivace, neurčitého integrálu a limity (sumy), určitého integrálu a limity (sumy). Abelova věta o konvergenční kružnici u mocninných řad. 2. Vícerozměrný integrál Elementy teorie míry, vnější míra, míra, měřitelné množiny a jejich vlastnosti, Lebesgueova míra a její vlastnosti, pojem "skoro všude". Měřitelné funkce a operace s nimi. Lebesgueův integrál a jeho základní vlastnosti. Fubiniho věta a věta o substituci, regulární substituce. Věty o limitních přechodech: Leviho, Lebesgueova, Fatouova, integrabilní majoranty. Integrály s parametrem, limita, spojitost a derivování podle parametru. Lebesgueovy prostory Lp 3. Křivkový integrál v obecné dimenzi Křivka, jednoduchá křivka, uzavřená křivka. Tečný a normálový vektor. Křivkový integrál 1. a 2. druhu, souvislost obou integrálů, nezávislost na parametrizaci. Potenciál vektorového pole. Výpočet integrálu druhého druhu pomocí potenciálu. Nulová rotace a souvislost s existencí potenciálu. 4. Plošný integrál v obecné dimenzi Jednoduchá a zobecněná k-dim-plocha v dimenzi n, parametrizace, 2-dim-plocha v dimenzi 3 a její normálový vektor. Plošný integrál 1. druhu a jeho interpretace. Orientovaná plocha, spojité pole jednotkových normál. Plošný integrál 2. druhu. Souvislost mezi integrálem 1. a 2. druhu. Grammův determinant a různá zadání plochy. Gauss-Ostrogradského věta, věta o divergenci, integrální reprezentace divergence, Greenovy formule. Stokesova věta, integrální interpretace rotace. 5. Integrace diferenciálních forem Vnější algebry vektorového prostoru, diferenciální formy a jejich přenášení, diferencování diferenciální formy, vnější diferenciál, diferencování součtu a součinu forem. Integrál z diferenciální formy, různé parametrizace a nezávislost na nich, až na orientaci. Zobecněná Stokesova věta.
Literatura
Kopáček, J. a kol.: Matematika pro fyziky, díly III-V, skriptum MFF UK Záznamy přednášek
Garant
doc. Mgr. Milan Pokorný, Ph.D.