Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Předmět Matematické modelování a MKP (MMMKP)

Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu MMMKP - Matematické modelování a MKP, Vysoká škola báňská - Technická univerzita Ostrava (VŠB-TU).

Top 10 materiálů tohoto předmětu

Materiály tohoto předmětu

Materiál Typ Datum Počet stažení

Další informace

Cíl

Student bude umět formulovat okrajové úlohy vznikající při matematickém modelování vedení tepla, pružnosti i dalšíchjevů (difuse, elektro a magnetostatika a podobně). Dále bude umět odvodit diferenciální a variační formulace těchto úloh i numerické řešení metodou konečných prvků. Bude znát zásadysprávného použití matematických modelů při řešení inženýrských úloh.

Osnova

Přednášky: Matematické modelování. Účel a obecné principy modelování. Výhody matematického modelování. Správné použití matematických modelů. Diferenciální formulace matematických modelů. Jednorozměrná úloha vedení tepla a její matematická formulace. Zobecňování modelu. Vstupní data, linearita, existence a jednoznačnost řešení. Nespojitá vstupní data. Jednorozměrná úloha pružnosti a další modely. Vícerozměrné modely. Variační formulace okrajových úloh. Slabá formulace okrajových úloh a její vztah ke klasickému řešení. Energetický funkcionál a energetická formulace. Koercivita a ohraničenost. Jednoznačnost, spojitá závislost řešení na vstupních datech. Existence a hladkost řešení. Ritzova - Galerkinova (RG) metoda. RG metoda. Metoda konenčných prvků (MKP) jako speciální případ RG metody. Historie MKP. Algoritmizace metody konečných prvků. Sestavení matice tuhosti a vektoru zatížení. Zohlednění okrajových podmínek. Numerické řešení soustavy lineárních algebraických rovnic. Různé typy konečných prvků. Přesnost řešení metodou konečných prvků. Apriorní odhad diskretizační chyby. Konvergence, h- a p-verze MKP. Aposteriorní odhady. Návrh sítě pro MKP, adaptivní techniky a optimální sítě. Software pro MKP a jeho užití pro MM. Preprocesing a postprocesing. Komerční programové systémy. Řešení zvláště náročných a speciálních úloh. Zásady pro matematické modelování užitím MKP.

Literatura

K. Rektorys: Variační metody v inženýrských problémech a v problémech matematické fyziky, SNTL Praha 1974. J. Nečas, I. Hlaváček: Úvod do matematické teorie pružných a pružně plastických těles, SNTL Praha 1983. R. D. Cook: Finite element modelling for stress analysis, J. Wiley, New York, 1995. C. Johnson: Numerical solution of partial differential equations by the finite element method, Cambridge Univ. Press, 1995

Požadavky

Žádné

Garant

prof. RNDr. Radim Blaheta, CSc.

Vyučující

prof. RNDr. Radim Blaheta, CSc.