Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Předmět Biomedicínské modely v informatice (N445074)

Na serveru studentino.cz naleznete nejrůznější studijní materiály: zápisky z přednášek nebo cvičení, vzorové testy, seminární práce, domácí úkoly a další z předmětu N445074 - Biomedicínské modely v informatice, Fakulta chemicko-inženýrská, Vysoká škola chemicko-technologická v Praze (VŠCHT).

Top 10 materiálů tohoto předmětu

Materiály tohoto předmětu

Materiál Typ Datum Počet stažení

Další informace

Sylabus

1. Overview of methods for modeling biological signals, modeling of biological systems control, homeostasisExercise: Modeling regulation of skin temperature in different parts of the body (experiment No. 02 Vernier Labquest), methods of time series prediction2. Displaying signals in time and frequency domain, phase portrait, Poincaré sections, recurrent views, types of signals - deterministic, stochastic, fractal and chaos, the calculation of basic signal characteristics, methods of noise removing Exercise: Modeling responses to respiratory breath arrest, rapid breathing and exercise (experiment No. 20 Vernier Labquest)3. Chaos and dynamic analysis of biological signals. One-dimensional maps and flows, two-dimensional equilibrium, dissipative chaotic flow, Lyapunov exponents, Kaplan-York's dimension, reconstruction state spaceExercise: Calculation of local Lyapunov exponents, Lyapunov numbers and global Lyapunov exponent for the logistic and sine map, estimation of Lyapunov exponents from experimental data4. Formats of the biomedical data, "Universal Data Format for biosignals" (GDF, EDF), DICOM, proprietary formats, the biological signal and "Data mining" methods, object and relational databasesExercise: Convert EEG signals in EDF format into a matrix in MATLAB, create object-relational database in Access5. Analytical and piecewise linear model ECG parameter estimation of normal and pathologic ECG. Compression and transmission of ECGExercise: Capturing and analyzing ECG (experiment No. 12 Vernier Labquest), PL calculation model from the measured data using the Haar discrete wavelet transform, the calculation of the RMSE of the model display in the phase space and recurrent display of measured data6. Modeling the electrical activity of neurons. Modeling alpha attenuation reaction and the rebound phenomenon, modeling rhythm following during photic stimulation through a network of chaotic neural oscillators. Modeling self-organization of coupled chaotic neural maps, modeling changes in EEG in dementiaExercise: Recording EEG signal on Walter device, rebound phenomenon, photic stimulation. Estimation based on the ratio of signal energy characteristic frequency of alpha activity and frequency photostimulation.7. Modeling synchronization in EEG, estimates of global synchronization, anticipated synchronization and synchronization delay, phase synchronization. Discrete Hilbert transform estimate instantaneous phase estimate of the characteristic frequency.Exercise: Calculation of coherence, wavelet coherence, correlation of wavelet coefficients of wavelet coefficients of mutual information and global synchronization of occipital EEG leads with open and closed eyes8. Detection, separation, localization, classification and modeling of evoked potentials and summation of muscle action potentials. Prony's methodExercise: Comparison of PCA, ICA, wavelet transform and modeling Prony's method for estimating of the development habituation, amplitude and latency of visual evoked potentials9. Encoding information in visual and auditory analyzer, modeling communication in biomedical objects, Granger causality, spectral Granger causality, directional partial coherence , directional transfer function and corticomuscular coherence Exercise: Comparison of estimated synchronization delay, partial directional coherence and directional transfer function between EEG channels10. Biostatistics, the most common errors in hypothesis testing in biomedical studies, statistical parametric mapping and Bonferroni correction methods used in epidemiological studies, hypothesis testing of the type "person at a time", Kaplan-Meier estimator, Weibull model, nonlinear statistics,Exercise: Testing the signal variance differences between EEG channels 19 and 19 segments in one channel, relationship to stationarity and correlation of signals, SPM with functional magnetic resonance11. Analysis of texture in ultrasound diagnostics, segmentation, registration, visualization and simulation, Procrust registration method, cookurence histogram, Haralick's textural featuresExercise: Textural segmentation of ultrasound images of various parts of the body12. Three-dimensional segmentation, classification and modeling of two-dimensional images of magnetic resonance imagingTutorial: 3-D view of the skeleton from spine MR images, 3-D view of the extent of ischemic zone - images of the brain computed tomography13. Feature selection, biomedical data classification methods, decision making and expert systems in medicineExercise: Automatic detection of lung tumors from lung computed tomography images14. Advanced modeling in biology and physiology, the advantages and disadvantages Simulink, Modelica language, simulator QCP, QHP / Hummod, Golem.Exercise: Testing training simulators - ECGsim to simulate pathology, ECG heartsim to simulate the pressure profile in the heart, NEURON simulation of biological neurons and biological neural networks, AIDA for simulating the response of the organism diabetic insulin administration

Literatura

R: Reddy D.C.: Biomedical Signal Processing � Principles and Techniques, McGraw Hill, 2005,ISBN: 0070583889A: Weitkunat R.: Digital Biosignal Processing, Elsevier, 1991, ISBN-10: 0444891447, ISBN-13: 978-0444891440Z: Drongelen W., Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals, Elsevier, 2007, ISBN-10: 0123708672 ISBN-13: 978-0123708670A: Izhikevich E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), The MIT Press, 2007, ISBN 0262090430, 9780262090438

Garant

Vyšata Oldřich MUDr. PhD.