Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Diody a jejich význam pro elektronické obvody

DOC
Stáhnout kompletní materiál zdarma (101 kB)

Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu DOC.

Miniaturní přechod PN vytvořený popsaným způsobem má kapacitu asi 1 pF. Proto je mezní frekvence těchto diod značně vysoká (kolem 100 MHz; ve speciálním provedení až 1000 MHz). Závěrná napětí jsou však pouze několik desítek voltů a přípustné hodnoty usměrněných proudů jen 10 až 20 mA.

Diody s přivařeným zlatým hrotem : Rozdíl mezi diodou se zlatým hrotem a hrotovou diodou popsanou výše je patrný z obrázku. Základem diody je opět destička z germania typu N, která je katodou. Drátek tvořící přívod k anodě je však zlatý s příměsí galia. Při formování dojde k přivaření zlatého drátku k polovodičovému krystalu. Zároveň se galium rozpustí v roztaveném germaniu a vytvoří silně dotovanou oblast typu P. Vznikne dioda s miniaturním slitinovým přechodem PN. Takto vyrobená dioda sdružuje v sobě výhodné vlastnosti hrotových i plošných diod. Má vysokou mezní frekvenci, která dosahuje běžně asi 100 MHz a u některých typů diod až 1000 MHz. Výhodou je též menší odpor v přímém směru a větší odpor i menší proud ve zpětném směru, než mají diody hrotové.

Pro stabilizaci stejnosměrných napětí je možné využít vlastností přechodu PN plošných křemíkových diod vyrobených vhodným způsobem, které jsou polarizovány ve zpětném směru.

Má-li dioda velmi tenký přechod PN, vzniká při působení napětí ve zpětném směru v její velmi tenké vyprázdněné oblasti tak velká intenzita elektrostatického pole, že dochází k vytrhávání elektronů z vazeb krystalové mřížky. Počet minoritních nosičů náboje v důsledku toho velmi vzroste. To se projeví prudkým růstem zpětného proudu diody při téměř stálém napětí. Přitom se dynamický vnitřní odpor diody zmenší z hodnoty několik MΩ na několik desítek až jednotek Ω.

Popsaný děj se nazývá Zenerův děj podle svého objevitele. Napětí, při kterém Zenerův jev nastává, se nazývá Zenerovo napětí. K vyvolání Zenerova jevu je třeba, aby intenzita elektrostatického pole v křemíku dosáhla hodnoty řádově 107 V/m. Intenzita elektrostatického pole ve vyprázdněné oblasti je při určitém napětí nepřímo úměrná její tloušťce. U nejtenčích vrstev se dosahuje kritické intenzity pole (Zenerova napětí) asi při 3 V. Při zvětšování tloušťky přechodu Zenerovo napětí postupně stoupá. Zároveň se však objevuje další jev zvětšující proud ve zpětném směru. Elektrony získávají při průchodu přechodem v důsledku velké intenzity pole značnou kinetickou energii. Je-li přechod široký, je velká pravděpodobnost, že letící elektron narazí ve vyprázdněné oblasti na jiný elektron a uvolní ho z vazby. Oba elektrony jsou polem dále urychlovány a během své cesty uvolní nárazem další elektrony, ty podobným způsobem opět další. Nastává lavinová ionizace v oblasti přechodu, projevující se podobným způsobem jako Zenerův jev.

Témata, do kterých materiál patří