Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Pulzní zdroje - praktické zapojení

DOC
Stáhnout kompletní materiál zdarma (98.5 kB)

Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu DOC.

34.Pulzní zdroje - praktická zapojení

a) Spínané zdroje pracující s frekvencí sítě

Spínané zdroje bez transformátoru

Nejjednodušší schéma zdroje bez transformátoru je na obr.

Jako usměrňovač síťového napětí se používá tyristor. Tyristor je normálně nevodivý v obou směrech. Do propustného stavu je uváděn přivedením napětí na řídící elektrodu, které musí být kladné vůči katodě. Tyristor propouští pouze část kladných půlperiod a tím lze řídit výstupní napětí. Zapojení má oproti běžnému zapojení s usměrňovači navíc jen zdroj referenčního napětí, které spíná tyristor. Velikost referenčního napětí je dána vztahem . Tyristor usměrňuje a stabilizuje takto:

Při kladné půlvlně se nabije kondenzátor C1. Je-li Ustab > Uref, tyristor vypne a kondenzátor C1 dodává nahromaděnou energii do zátěže. Čím je větší odběr energie zátěží, tím častěji tyristor zapíná a tím do jisté míry stabilizuje výstupní napětí.

Referenční napětí je odvozeno od napětí sítě přes R2. Dioda D1 propustí na řídící elektrodu pouze napětí správné polarity. Velikost výstupního napětí lze nastavit typem stabilizační diody (v mezích 20 - 290V). Zapojení stabilizuje i změny výstupního napětí s ohledem na zátěž. Změny vstupního napětí nestabilizuje.

V následujícím zapojení je referenční napětí nepřímo úměrné změnám síťového napětí a tudíž obvod stabilizuje i změny vstupního napětí. Tyristor připojuje střídavou síť na vstup filtru R8C5 ve chvíli, kdy okamžitá hodnota síťového napětí odpovídá žádané hodnotě stejnosměrného napětí. Aby nebylo nutno vypínat tyristor prostřednictvím složitých vypínacích obvodů, volí se pro jeho sepnutí okamžik, kdy hodnota síťového napětí klesá. Filtr L1C1 brání pronikání vysokých kmitočtů při spínání do napájecí sítě. Dioda D1 je vodivá při záporných půlvlnách síťového napětí, takže na ní je kladné pulzující napětí, které se filtruje filtrem R1C2 a napájí kolektor tranzistoru Q1. Když napětí na bázi tranzistoru překročí napětí na jeho emitoru, tranzistor se otevře a rychlá změna kolektorového napětí se přenese přes derivační článek C4R7 na řídící elektrodu tyristoru, který sepne. Úroveň výstupního napětí lze ovládat potenciometrem R3.

Pro řízení těchto zdrojů se s výhodou rovněž používají diaky, jak je uvedeno na obr.

Kondenzátor C2 se nabíjí přes odpor R5. Když napětí na něm dosáhne spínacího napětí diaku, tento sepne a náboj kondenzátoru C2 se vybije přes derivační článek C3R10 do řídící elektrody tyristoru, který sepne a na výstupu se objeví plné síťové napětí. Tento obvod tvoří základ stabilizátorů na obr.

Obvod udržuje stálé výstupní napětí nezávisle na kolísání jak vstupního napětí, tak i zátěže. Funkci stabilizátoru plní tranzistor Q1. Při změnách napájecího napětí se mění jeho bázový i kolektorový proud. Při zvýšení napájecího napětí vzroste kolektorový proud, klesne kolektorové napětí a prodlouží se doba nabíjení kondenzátoru C2. K zapnutí diaku a tím i tyristoru dojde později a výstupní napětí se při změnách vstupního napětí nezmění. Při poklesu napájecího napětí je proces opačný, nabíjení kondenzátoru se zrychluje. Obdobný proces nastává i při kolísání výstupního napětí vlivem kolísání zátěže. Zvětšení odporu zátěže vede k vzrůstu výstupního napětí a tím i k zvětšení proudu do báze (nyní přes odpor R7), tím k zvětšení kolektorového proudu, poklesu kolektorového napětí a zpoždění okamžiku zapnutí tyristoru.

Témata, do kterých materiál patří