2.-hodina-trojuhelniky-rovnoramenne-a-rovnostranne
Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu DOCX.
2. hodina – Trojúhelníková nerovnost, trojúhelník rovnoramenný a rovnostranný
1. Ověř, zda je možné sestrojit trojúhelník, který má délky stran (pomocí trojúhelníkové nerovnosti):
4 cm, 6 cm, 7 cm
10 cm, 28 cm, 18 cm
36 mm, 2,6 cm, 46 mm
25 mm, 3 cm, 6 cm
2. Vyber správnou odpověď (řeš pomocí trojúhelníkové nerovnosti):
Máme danou úsečku a o délce 6 cm. Která z následujících dvojic úseček může s touto úsečkou vytvořit trojúhelník?
b = 3 cm, c = 3 cm
b = 8 cm, c = 2 cm
b = 7 cm, c = 8 cm
b = 5 cm, c = 12 cm
3. Práce s rovnoramenným trojúhelníkem ABC:
napiš, jak nazýváme jeho části vyznačené šipkami,
načrtni osu souměrnosti trojúhelníku,
napiš, které části trojúhelníku jsou shodné
4. Prováděj výpočty v rovnoramenném trojúhelníku:
Rovnoramenný trojúhelník ABC (c – základna): obvod trojúhelníku je 140 cm, základna má délku 60 cm. Dopočítej délku ramen.
c = 60 cm
o = 140 cm
a =
b =
Rovnoramenný trojúhelník ABC (c – základna): obvod trojúhelníku je 30 cm, rameno má délku 8 cm, dopočítej délku základny.
a = 8 cm
o = 30 cm
b =
c =
Rovnoramenný trojúhelník ABC (c – základna): obvod trojúhelníku je 12 cm, základna má délku 5 cm. Dopočítej délku ramen.
o = 12 cm
c = 5 cm
a =
b =
Rovnoramenný trojúhelník ABC (c – základna): úhel při hlavním vrcholu má velikost 70°. Dopočítej velikost úhlů při základně.
γ = 70°
α =
β =
Rovnoramenný trojúhelník ABC (c – základna): úhel při základně má velikost 25°. Dopočítej velikost úhlu při hlavním vrcholu.
α = 25°
β =
γ =
Rovnoramenný trojúhelník ABC (c – základna): jeden z úhlů má velikost 70°. Dopočítej velikost ostatních úhlů. Urči všechna řešení.
řešení:
řešení:
Řešení:
1. Ověř, zda je možné sestrojit trojúhelník, který má délky stran (pomocí trojúhelníkové nerovnosti): součet dvou kratších stran musí být více než délka třetí strany
4 cm, 6 cm, 7 cm 4 + 6 = 10 >7 ano, lze sestrojit
10 cm, 28 cm, 18 cm 10 + 18 = 28 = 28 ne, nelze sestrojit
36 mm, 2,6 cm, 46 mm 36 + 26 = 62 > 46 ano, lze sestrojit
25 mm, 3 cm, 6 cm 2,5 + 3 = 5,5 < 6 ne, nelze sestrojit
2. Vyber správnou odpověď (řeš pomocí trojúhelníkové nerovnosti):
Máme danou úsečku a o délce 6 cm. Která z následujících dvojic úseček může s touto úsečkou vytvořit trojúhelník? součet dvou kratších stran musí být více než délka třetí strany
b = 3 cm, c = 3 cm a = 6 cm 3 + 3 = 6 = 6 ne, nelze sestrojit
b = 8 cm, c = 2 cm a = 6 cm 6 + 2 = 8 = 8 ne, nelze sestrojit
b = 7 cm, c = 8 cm a = 6 cm 6 + 7 = 13 > 8 cm ano, lze sestrojit
b = 5 cm, c = 12 cm a = 6 cm 6 + 5 = 11 < 12 ne, nelze sestrojit
3. Práce s rovnoramenným trojúhelníkem ABC:
napiš, jak nazýváme jeho části vyznačené šipkami,
načrtni osu souměrnosti trojúhelníku,
napiš, které části trojúhelníku jsou shodné
hlavní vrchol