Vypracovane-zkouskove-otazky - teorie
Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu DOCX.
Téma 4: Interpretace výsledku, dualita
1) Uveďte způsob, jak v simplexové tabulce identifikujete bázické a nebázické proměnné. Rovněž uveďte, jak určíte hodnoty všech proměnných v daném bázickém řešení.
Interpretace výsledku
Rozdělení proměnných na bazické a nebazické
Hodnoty všech proměnných
Zápis vektorem bazického řešení
Zápis vektorem obecného řešení
-
Hodnota účelové funkce
-
Matice báze B, inverzní matice báze B-1 – hodnoty proměnných matice, která byla ve výchozím řešení jednotková
-
Relativní nevýhodnost nebazických proměnných- duální (stínové) ceny→ najdu je na řádku Zj-Cj
Česky :D Bazický sou ty proměnný, co v simplexový tabulce vyjdou v levo dole a maj hodnotu jaká je v tom samym řádku ve sloupečku pravejch stran označenym „b“ A ty co tam nevýdou sou nebazický a maj hodnotu nula.
Výsledkem může být:
Právě 1 optimální řešení→ v bázi není pomocná proměnná a nulová hodnota je pouze pod bazickými a pod nebazickými je kladné číslo (MAX), záporné (MIN).
Nekonečno optimálních řešení→v bázi není p, nulová hodnota je pod bázickými a pod nebázickými je alespoň jedna nula
Neexistuje přípustné řešení → u MAX není záporná hodnota, tzn.že optimální řešení sice bylo nalezeno, ale v bázi je p, takže řešení je nepřípustné. U MIN není kladná hodnota a v bázi je p
Hodnota účelové funkce může neomezeně růst- v bázi jsou rozhodovací proměnné (ne p), ale v kriteriálním řádku u dvou proměnných jsou záporné hodnoty , které se dají zlepšit a v jejich sloupci nelze provést test přípustnosti, jelikož bychom dělili zápornými čísly a to nemůžeme = řešení není optimální
2) Co je to matice báze a inverzní matice báze v modelech lineárního programování? Jak tyto matice určíme a jaký je jejich význam?
Matice báze
Značíme ji B
Jednotkové vektory ve výsledné tabulce, zapsané jak byly v původní výchozí tabulce
Inverzní matice báze
Základ pro všechny postoptimalizační úvahy
Značíme B-1
Umožní spočítat výslednou tabulku z výchozí v jednom kroku
Zjistíme z výsledné tabulky na místech, kde ve výchozí tabulce byly jednotkové vektory
3) Co jsou to duální ceny proměnných? Jak je určíme a interpretujeme?
Vektor pravých stran b v primárním modelu a vektor cen b v duálním
Vektor cen c v primárním modelu a vektor pravých stran c v duálním
Najdeme je na kriteriálním řádku Zj-Cj, vyjadřují nevýhodnost nebazických proměnných
Určují jak se změní hodnota účelové funkce, když do řešení zařadíme danou proměnnou na jednotkové úrovni
Duální cena proměnné např. X1= 2 znamená to, že kdybychom do řešení zařadili proměnnou X1 na Jednotkové úrovni, hodnota účelové funkce by se zhoršila o 2 miliony korun
4) Popište obsah vektoru bázického řešení a vektoru obecného řešení modelu lineárního programování. Uveďte příklady obou vektorů.