Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




Vybrané kapitoly ze středoškolské fyziky - Pro přípravný kurz k přijímacím zkouškám z fyziky na DFJP Univerzity Pardubice - Dynamika pohybu hmotného bodu

DOC
Stáhnout kompletní materiál zdarma (184 kB)

Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu DOC.

Příklad:

Na dokonale hladké nakloněné rovině určité délky s ve vzduchoprázdnu je položen kvádr v jejím nejvyšším bodě. Po proběhnutí celé nakloněné roviny dosáhne kvádr rychlost o velikosti 3 m.s-1. Určete výšku nakloněné roviny.

Jak ze zadání úlohy vyplývá, na kvádr nepůsobí žádné vnější síly. Musí proto platit zákon zachování mechanické energie - součet energie potenciální a kinetické v nejvyšším bodě nakloněné roviny musí být stejný jako na jejím dolním konci.

Platí

Eko + Epo = Ek + Ep

přičemž Eko = 0 J ; Ep = 0 J (viz vedl.obr.).

Tedy mgh = ,

z čehož dostáváme hledanou výšku

0,45 m .

Odpověď: Výška nakloněné roviny je 0,45 m.

Uvědomte si, že výsledek je naprosto stejný, jako kdyby těleso padalo z výšky h volným pádem.

Kdyby ovšem existovalo tření mezi tělesem a podložkou nakloněné roviny, energie tělesa by nebyla stálá. Síla tření by konala práci, jež by energii tělesa zmenšila tím více, čím by byla délka s nakloněné roviny větší. Protože by ale pokaždé došlo ke stejnému poklesu polohové energie ( ∆Ep = m.g.h ), musel by se úbytek celkové energie projevit v menší hodnotě energie pohybové (při delší dráze s) a tedy i na menší konečné rychlosti tělesa v takovém případě.

2.2.5 Zákon zachování hybnosti

Příčinou změny hybnosti hmotného objektu je na něj působící síla. U soustav hmotných objektů pak síly, jež na takové soustavy působí. Zde rozlišujeme:

a) Síly vnitřní − to jsou takové síly, jimiž na sebe vzájemně působí hmotné objekty dané soustavy. Jsou to tedy síly akce a reakce, jejich výslednice je ale vždy nulová, a proto nemohou měnit pohybový stav (celkovou hybnost) soustavy. Protože však působí každá z nich na jiný objekt soustavy, může pohybový stav tohoto objektu měnit. Celková hybnost soustavy tak zůstává konstantní.

b) Síly vnější − takové síly, jež charakterizují působení na soustavu "cizími" objekty (tělesy), jež do dané soustavy nepatří. Tyto síly (pokud dávají nenulovou výslednici) pohybový stav - tedy celkovou hybnost soustavy - vždy změní.

Zákon zachování hybnosti proto platí výhradně v tzv. izolovaných soustavách (pod pojmem soustava můžeme ale chápat i jen jeden jediný hmotný bod). Jsou to soustavy, na něž nepůsobí vnější síly nebo se tyto síly navzájem ruší.

Zákon zachování hybnosti je-li výslednice Fext všech vnějších sil působících na soustavu nulová, je celková hybnost soustavy hmotných bodů konstantní (co do velikosti i co do směru)

= konst. . (2.40)

Zákon zachování hybnosti můžeme aplikovat například u různých srážek, explozí a pod., kdy v soustavách působí skutečně jen vnitřní síly. Typickým příkladem je dokonale nepružná srážka dvou těles (po níž se tělesa spojí v jeden celek).

Příklad:

Proti sobě se pohybují dvě tělesa o hmotnostech 8 kg a 2 kg. První má rychlost o velikosti 3,5 m.s-1, druhé pak 15,0 m.s-1. Při dokonale nepružné srážce se spojí v těleso jedno. Určete, jakou rychlostí se bude pohybovat, a o kolik se při této srážce změní energie těles..

Témata, do kterých materiál patří