Teorie obvodu I (TOI)
Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu PDF.
J
i
u
/
)
,
(
.
0
10
20
30
40
-2.0
0.0
2.0
4.0
6.0
t (ms)
p
(
k
V
A
)
0.0
0.1
0.2
0.3
0.4
442
722
1002
t (s)
(u
,i
)/
J
(
V
A
)
Obr. 3 Průběh výkonu:
611
,
0
VA,
1182
,
W
722
P
P
λ
P
P
.
Obr. 6 Průběh podílu
J
i
u /
)
,
(
.
Jeho hodnota udává přírůstek střední hodnoty práce za dobu jedné periody a zároveň střední hodnotu 
aktivní sloţky elektromagnetické energie dodané vnějším obvodem za tutéţ dobu. 
1. Vymezení elektromagnetických jevů obvodovými modely
13
Střední  hodnota  skalárního  součinu  dvou  stejných  (identických)  veličin  na  době  periody  udává 
přírůstek střední hodnoty práce na lineárním prvku s jednotkovou hodnotou parametru, buď 
Ω
1
R
,
potom
i
u
1 nebo
S
G
1
, potom
u
i
1 a následně
2
)
,
(
)
,
(
I
T
i
i
T
i
u
,
2
)
,
(
)
,
(
U
T
u
u
T
i
u
.
Podíly
R
I
P
P
2
/
,
G
U
P
P
2
/
udávají kolikrát je hodnota činného výkonu větší neţ střední hodnota
práce příslušného lineárním prvku s jednotkovou hodnotou parametru. Součinem hodnot R a G
zjistíme, ţe
1
2
2
2
2
2
2
P
P
P
P
P
I
U
P
RG
.
V důsledku této nerovnosti definujeme rozdílem čtverců hodnotu
2
2
2
P
F
P
P
P
, kde písmenem
F
P
označujeme tzv. fiktivní výkon a písmenem P zdánlivý výkon, který je definován geometrickým
průměrem středních hodnot práce prvků s jednotkovými hodnotami parametrů  
 
2
2 I
U
P 
.
S ohledem  na  důslednost  (konzistenci)  termínů  v této  publikaci,  budeme  také  místo  přívlastku  činný 
pouţívat i přívlastek aktivní v návaznosti na fiktivní, a následně zaváděný termín reaktivní.  
1.2.5 Činitelé výkonu
V roce  1897  Steinmetz  definoval  podílem  aktivního  a  zdánlivého  výkonu  činitel  aktivního  výkonu, 
zatímco podílem fiktivního a zdánlivého výkonu definoval v roce 1979 Depenbrock činitel fiktivního 
výkonu 
