Jak Začít?

Máš v počítači zápisky z přednášek
nebo jiné materiály ze školy?

Nahraj je na studentino.cz a získej
4 Kč za každý materiál
a 50 Kč za registraci!




1_6_Tuhe teleso

PDF
Stáhnout kompletní materiál zdarma (5.08 MB)

Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu PDF.

Podívejte se ještě jednou na obrázek Obr.1.6.-1 znázorňující translační pohyb tělesa. Pro tento 
pohyb je charakteristické, že všechny body tělesa se pohybují stejnou rychlostí v. Kinetickou 
energii  tělesa  dostaneme,  sečteme-li  kinetické  energie  všech  jednotlivých  n  hmotných  bodů 
tělesa mi.  

139 

Obr.1.6.-1 

2

2

3

2

2

2

1

2

1

..........

2

1

2

1

2

1

v

m

v

m

v

m

v

m

E

n

k

+

+

+

+

=

Na pravé rovnice vytkneme výraz 

2

2

1

v . 

.

2

1

)

........

(

2

1

1

2

3

2

1

2

=

=

+

+

+

=

n

j

j

n

k

m

v

m

m

m

m

v

E

Součet hmotností jednotlivých bodů tělesa mj je celková hmotnost tělesa m. 

Kinetická  energie  tělesa  při  posuvném  pohybu  se  tedy  vyjádří  stejně  jako  kinetické  energie 
hmotného  bodu.  Vlastně  nahrazujem  naše  tuhé  těleso  hmotným  bodem  celkové  hmotnosti 
tělesa umístěným do jeho těžiště. 

2

2

1

mv

E

k =

 .   

         1.6.-12 

•  Kinetická energie otáčivého pohybu. 

Při  určování  kinetické  energie  rotujícího  tělesa  budeme  postupovat  obdobně  jako  u  pohybu 
posuvného. To znamená, že si vyjádříme kinetické energie jednotlivých bodů tělesa a pak je 
sečteme. 

Vyjdeme  z obrázku  Obr.1.6.-30.  Zde  je  nakresleno 
rotující  těleso  ve  tvaru  kotouče  otáčející  se  úhlovou 
rychlosti  ω  kolem  osy  jdoucí  středem.  Na  obrázku 
jsou  znázorněny  hmotné  body  jejichž  kinetická 
energie  se  mění  v závislosti  na  vzdálenosti  od  osy 
otáčení.  Důležité  je,  že  všechny  body  mají  stejnou 
úhlovou rychlost ω. Energie j-tého hmotného bodu je 

dána 

výrazem 

Témata, do kterých materiál patří