3_01_El_pole
Níže je uveden pouze náhled materiálu. Kliknutím na tlačítko 'Stáhnout soubor' stáhnete kompletní formátovaný materiál ve formátu PDF.
Gaussovy plochy) libovolného tvaru?
355
TO 3.1.-9. Jaká je jednotka toku vektoru intenzity elektrostatického pole?
a) V.m
b) V.m
-1
c) V
-1.m
d) V
-1.m-2
TO 3.1.-10. Uvnitř nabité kulové plochy je vždy intenzita:
a) nulová
b) maximální
c) různá, dle hustoty náboje na
této ploše
Určete pomocí Gaussovy věty elektrostatiky velikost elektrické intenzity pole
nekonečně dlouhého nabitého vlákna (zanedbatelné tloušťky) ve vzdálenosti
r od osy vlákna, jestliže lineární hustota náboje na vlákně je
τ.
Zvolme Gaussovu plochu ve tvaru povrchu válce, který obklopuje nabité
vlákno a je s tímto vláknem souosý (osa plochy válce splývá s osou vlákna).
Pole nabitého vlákna má rotační symetrii, vektor intenzity směřuje kolmo k
ose válce (od osy pro kladný náboj vlákna, opačně pro záporný náboj).
Tok podstavami válce je nulový.
Vše je zřejmé z Obr. 3.1.-25:
Obr. 3.1.-25.
Je tedy třeba stanovit tok pláštěm válce, který je nenulový.
Obsah pláště válce je 2
πrh, kde h je výška válcové plochy. Tok intenzity elektrického pole
tímto pláštěm je tedy podle vzorce 3.1.-29 dán:
Φ
e = E S cos 0 = 2
π E r h.
Dle Gaussova zákona Q =
ε
0
Φ
e získáváme:
2
ε
0 E
π r h = τ h, z čehož přímo vyplývá hledaný vztah pro intenzitu pole vlákna:
r
E
0
2
πε
τ
=
356
Ve výsledném vztahu chybí výška válce, kterou jsme si na začátku mohli libovolně zvolit, což
znamená, že na této volbě nezáleží a vztah tedy platí i pro nabité vlákno nekonečné délky.